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On Liicke’s theory of turbulence 
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Abstract. The Feynman variational method is applied to a real functional integral 
representation of a generator for the velocity correlation functions in stationary homo- 
geneous turbulence. The resulting approximation for the two-point correlation differs from 
that recently obtained by Lucke using a similar approach. It is pointed out that Lucke’s 
approximation is based on a restricted trial function and does not correctly reproduce 
second-order perturbation theory in the limit of weak non-linearity. The approximation 
derived here does not suffer from this defect but is more complicated. Some defects of this 
general approach are discussed. 

1. Introduction 

Functional integral representations of the correlation and response functions for a wide 
range of classical systems have been shown to provide a convenient means for deriving, 
for such systems, a perturbation theory analogous to that already familiar in quantum 
mechanics. It has also been pointed out that such representations may be useful in 
suggesting approximations of a non-perturbative nature. (For a general discussion and 
other references see Phythian (1977).) 

Recently Lucke (1978a) has applied the Feynman variational method to a generat- 
ing functional for the velocity correlation functions in a randomly stirred Navier-Stokes 
fluid in a statistically stationary, homogeneous and isotropic state. The use of the 
Feynman approach necessitates a real generating functional, since it is based on the 
derivation of a lower bound for this quantity, and it has therefore not been possible to 
apply this method to the complex generating functional for correlation and response 
functions which has proved so useful in developing perturbation theory. A more 
limited real generating functional, for correlation functions only, can however be 
obtained, to which the Feynman method may be applied. Having obtained an optimum 
bound on this generator, for a suitable set of trial functions, one may then calculate 
approximate correlation functions by differentiation. The equation derived in this way 
by Lucke for the two-point correlation function is a Dyson-type equation of compara- 
tively simple form. Solutions so far obtained have been limited to the case in which the 
stirring forces have a white frequency spectrum and a power law wavenumber spectrum 
(see also Lucke and Zippelius 1978, Lucke 1978b). 

This approximation, however, suffers from the unfortunate feature that it does not 
correctly reproduce any terms, beyond zeroth order, in the perturbation series for the 
correlation function. In view of the particular trial function employed, which cor- 
responds to independent Fourier modes, one would on the contrary expect the method 
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to be most effective for weak non-linearity (i.e. small Reynolds number) and to 
reproduce at least terms up to second order in the perturbation expansion. A closer 
examination shows that this failure arises from the adoption of a trial function which has 
an unnecessarily restrictive form, since, when this restriction is relaxed, a new approxi- 
mation for the two-point correlation function emerges. The Dyson equation obtained 
by Lucke is now supplemented by a second equation which bears some resemblance to 
the equation for a three-point vertex in renormalised perturbation theory. The 
calculation of the approximate correlation function requires the solution of these two 
coupled equations. This new approximation is found to give correctly the perturbation 
series for the correlation function up to terms of second order. 

In 5 2 we briefly describe the functional integral representation of the generating 
functional for the correlations, and indicate how this is related to the perturbation 
series. In 0 3 the variational principle is applied, and the approximation is derived and 
contrasted with that of Lucke. In an Appendix it is pointed out that the Feynman 
variational method arises from the simplest of an infinite set of lower bounds, a point 
which does not seem to have been previously remarked upon. 

2. The functional integral representation 

Since the application of the Feynman variational principle requires a real generating 
functional, it is most convenient to use Herring’s form of the equations of motion (the 
Navier-Stokes equations) in which the velocity field is expressed in terms of real 
amplitudes which conveniently describe a statistically homogeneous, isotropic situa- 
tion. 

The fluid velocity field is assumed to satisfy periodic boundary conditions, with large 
period 2L, in the position coordinates, so that it may be expanded as a Fourier series. 
The resulting coefficients u(k ,  t ) ,  with k of the form ~ ( n l ,  n2,  n3 ) /L ,  where the ni are 
integers, satisfy the reality condition u*(k, t )  = u( -k ,  t )  and the incompressibility 
condition k .  u (k ,  t )  = 0. This second condition can be dealt with by introducing, for 
each k, two unit vectors orthogonal to k and to each other, and then representing u(k ,  t )  
by its two components u,(k, t ) ,  with a = 1,2 ,  in these directions. The reality condition 
is satisfied automatically if we work in terms of the real and imaginary parts of u,(k,  t ) ,  
denoted by u,,,(k, t ) ,  with 7r = 1,2 ,  and limit k to a subset S of its possible values, such 
that, for each k # 0, either k or -k, but not both, belongs to S. Finally it is assumed that, 
in each realisation of the flow, a frame of reference is used in which the spatial average 
velocity is zero, so that u,,,(k, t )  = 0 for k = 0. 

If the set of parameters a, 7,  k is represented by a single symbol such as j ,  1, m, . . . , 
then the equations assume the simple form 

The quantities F , ( t )  represent the stirring force which is assumed to. be statistically 
homogeneous, isotropic and stationary and of zero mean, while vj is the viscous term 
vk2 .  The coefficients Milm are taken as symmetric in the last two indices, and vanish if 
any two indices are equal. Other general properties follow from the translational 
invariance of the Navier-Stokes equations and the conservation of energy by the 
non-linear terms. We are interested in the statistically homogeneous, isotropic and 
stationary state which is eventually established when the initial conditions have been 
‘forgotten’ and the viscous dissipation is balanced by the energy input from the stirring 
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force. In this representation the two-point correlation functions of the velocity and 
force fields are diagonal, and the diagonal terms are actually independent of the indices 
a, r.  We shall, for brevity, refer to this as the diagonal property. 

The perturbation expansion of correlation functions can be obtained directly from 
(1) (see e.g. Wyld 1961). Giving the quantities M an ordering parameter A ,  the 
two-point correlation (Xi( t )Xi( t ' ) )  is given up to order A *  by 

- + A 2  ( + + d e  4 

+ 2  e) +etc, 

where j,t-i,r, represents S,I exp(-v,(t - t ' ) )e( t - -  t ' ) ,  which is the causal Green 
function of the linearised equation (given by A = O ) ,  and f , r m / , r '  represents the cor- 
relation function for A = 0, For brevity the labels will be omitted from the line endings. 
The rules for evaluating diagrams are sufficiently familiar now to require no repetition 
here. 

The functional integral representation may be obtained by approximating (1) by a 
difference equation such as 

(Xjfli1) -Xjfl ' ) /7 = -v ,x ;  +I M,i,X'I"'X',"' +Fj"' (3) 

in the time interval of interest (to, t ) .  The interval has been divided into N equal 
sub-intervals each of duration T, and we have put PI"' = P,(to + n7), etc. If the viscosity 
is non-zero, then there will be lower limits to the size and circulation time of excited 
eddies, and equation (3) should therefore be a good approximation if T is sufficiently 
small. It is clear too that the summation over wavenumbers in (3) may be cut off at some 
sufficiently large value, and we shall assume that this has been done. The initial time to is 
to be taken as large and negative, so that the stationary state has been attained. 

If the initial values X'O' are given, then equation (3) gives a transformation between 
the two sets of random variables (F'O', . . . , F"-") and (X") ,  . . . , X'"), and the 
respective probability density functions differ only by the Jacobian factor, which in this 
case is simply a constant. If the stirring force has a Gaussian distribution, the 
probability density for the X ' s  is seen to be 

where X is a normalisation constant, Q is the inverse of the correlation matrix whose 
elements are R f m )  = (F;"'Fi"), and f is written in terms of x by using (3). The 
summation convention is used here and subsequently, which is why the diagonal 
property of Q and R is not shown explicitly. In cases where the matrix R is singular it 
will be necessary to alter it slightly, for example by adding a small multiple of the unit 
matrix. This corresponds physically to the presence of a molecular noise contribution to 
the stirring force. 

Equation (3) may be rewritten in the form 

where q is a band matrix with q;;") = 0 unless n = m or m + 1. The matrix inverse of q is 
the discrete analogue of the causal Green function for the linearised equations of 
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motion. We have then 

@ = -6[  @----a], 
Q = 1 2 [  @----a 1, 

the square brackets denoting that a diagram is to be symmetrised with respect to its line 
endings, so that a, b and c are all symmetric. 

Correlation functions are now given by expressions of the form 

where s ( x )  denotes the negative of the exponent in ( 4 ) ,  and the integrations are carried 
out over all the variables x from -CO to +CO. The functional integral is obtained by 
proceeding to the limit as T + 0; however, it will be more convenient here to work with 
( 6 ) .  At this stage let us introduce a further simplification of the notation by absorbing 
the time superscripts into the subscripts, so that we write, for example, 

If the ordering parameter A is included, it is clear that the cubic and quartic terms in 
S are multiplied respectively by A and A '. The perturbation series for the correlation 
functions may be recovered by expanding the exponentials in the numerator and 
denominator of ( 6 )  as power series in A.  We find 

(XJr,) = w.-.w.M + $ A 2  (w+J-Jj-+)+.... (7) 

The matrix inverse of a has been represented by -, since, in the limit as T + 0, it 
reduces to the correlation function previously denoted by this symbol. If b and c are 
expressed in terms of M by using (3, then the original perturbation series in ( 2 )  is 
recovered. For example, in order A ' the diagram containing two b's gives the correct M 
diagrams plus an extra one which is precisely cancelled by the c diagram. 

Lucke's approximation, which will be stated later, gives an equation for the 
correlation function in which only the vertex c appears. When iterated to' generate a 
perturbative solution it gives a series of diagrams in which only the elements @ and - occur. It is easily seen to be impossible to generate the correct terms of the 
perturbation series in any order, except the zeroth, using only these two elements. 
Clearly a more satisfactory approximation'must involve also the quantity b. 
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3. The variational method 

The generating function Z ( h )  is defined as 

Z ( h )  = I exp(-S(x)), 
where 

S(x) = hjxj + s(x)  

and the correlations are given by 

Putting Z = exp W we have 

0 = (Xi) = -[a W/ahj]h=O, 

(XJ’i) = [az W/ahjahl]h=o. 

The Feynman variational method is based on the inequality (see Appendix) 

I exp(-S) 3 (1 expi-So)) exp(-(S - So>o), 

where (. * .)o denotes an average with respect to the probability density 
exp(-So)/j exp(-So). If So contains variable parameters and is such that the necessary 
integrations can be performed, then an optimum lower bound for 2, and hence W, can 
be obtained by maximising the right-hand side. This is then taken as the approximation 
for W. 

The requirement that the integrals be calculable means in practice that So must be 
chosen as a sum of a linear and a positive definite quadratic form in the integration 
variables, and hence corresponds to a system with non-interacting degrees of freedom. 
We therefore take 

1 So = qjxj + ?Aj l~ j~[ ,  

where q and A are arbitrary except for the requirement that A is symmetric and 
positive definite. We have then 

I exp(-So) = (2r)”’(det G)”’ exp($ Gjr~jql) ,  

where G is the matrix inverse of A.  Representing G by ,- and qj by f we find that 

(s-so)o= -@-b ++ c-4 ++ @++ a-++ 

Substituting this into the variational equation and making use of the identity 

det G = exp(tr log G) 
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we obtain the inequality 

where V is given by 

V(7,  G, h )  = $ tr log G +* -$@-$ 
+;a+: y-@ 
-hx+ constant. (9) 

The inequality (8) is now optimised by seeking a maximum value of V with respect 
to 7 and G. A stationary point is given by 

a v / a T j  = 0, a v/aGj, = 0, (10) 

which lead, after some manipulation, to the equations 

0 

Our approximation for W is then given by V(7 ,  G, h ) ,  with 7 and G given ifl terms of h 
by (11). Making use of the properties of b and c which follow from the translational 
invariance of the system, it is not difficult to see that, for h = 0, there is a solution of (11) 
for which 7 = 0 and G has the diagonal property and satisfies 

It should be noted that, for non-zero h, the quantity G does not in general have the 
diagonal property. We shall assume that, for sufficiently small h, the solution of (11) 
with 7 + 0 as h + 0 gives a maximum value for V. 

The approximation for the mean value (Xi) is given by [dV/dhi]h=O, where d/dh 
indicates that the dependence on h of 7 and G is taken into account in performing the 
differentiation. We have 

which, because of (lo), gives 

[a V/ahiIh=~ = [GjkTklh=o = 0, 

so that the mean value of the amplitudes is zero as required. The approximate 



On Lucke’s theory of turbulence 2641 

two-point correlation is given by 

The quantity [ a ~ ~ / a h ~ ] ~ = ~  can be obtained from (1 1). Denoting differentiation with 
respect to h by a dotted line we have 

[ a ~ ~ / a h ~ ] ~ = ~  = slj +$ +@... 
= Slj +$b/,,[aG,,/ahj]h=o. 

However, an equation for [aG/ah]h=o can be obtained from the second equation of (11) 
and, making use of the fact that A-’ = G, we obtain 

while the correlation is given by 

where it is understood that h is now set equal to zero. The three equations (12)-(14) 
give the final form of the approximation. 

In Lucke’s theory the trial function So is taken as 

hjxj +$AjkXjXk, 

with A having the diagonal property even for non-zero h. The correlation is then simply 
given by G, which is determined from the single equation (12). All dependence on b 
therefore disappears from the approximation. In contrast, in the theory presented here, 
equation (12) is supplemented by (13), which involves b and has the form reminiscent of 
a vertex part equation in perturbation theory. The lack of symmetry in the right-hand 
side of (14) is only apparent, as can be seen by making use of (12) and (13). If the 
ordering parameter A is restored and equations (12)-(14) solved as power series in A,  it 
is easily verified that series (7)  is recovered up to order A ’. It is interesting to note that, if 
Lucke’s trial function is used without the diagonality restriction on A, then a slightly 
simpler approximation emerges which also reproduces second-order perturbation 
theory. 

4. Discussion 

The use of the Feynman variational method to obtain an optimum lower bound for a 
generating function would appear to be a somewhat indirect approach, since the 
quantities of interest are obtained by differentiation of the generating function, and the 
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bounding nature of the approximation is lost in this process. Indeed it is possible to 
have a good approximation for the generator which yields poor approximations for the 
correlation functions. To examine this question further we have recently applied the 
method described here to the Duffing equation driven by white noise (Phythian and 
Curtis 1980). In that case the equation of motion has a cubic non-linearity and S(x) is 
even in x, as a result of which the approximation has a simpler structure. It turns out 
that the same approximation is then obtained whether one uses a general quadratic trial 
function or the restricted one of Lucke. It is found that the method gives poor 
agreement with exact results for the spectral function, except for very weak coupling, 
and compares unfavourably with simpler approximations based on linearisation of the 
Duffing equation. 

We believe that a better approach would involve the use of the variational method to 
obtain bounds on quantities more closely related to those of interest, for example the 
reduced probability density functions. We have not been able to devise such a theory 
because of difficulties associated with the infinite normalisation constants carried by the 
probability density functionals. This dfficulty is not really avoided by the use of the 
generating functional, since a perturbation theory analysis suggests that the exact and 
approximate W's differ by an infinite quantity. 

We conclude that this approach is rather unsatisfactory even by comparison with 
other theories of turbulence and cannot be taken seriously as a quantitative theory. At 
best it may be useful in providing realisable models sharing qualitative features with real 
turbulence. 
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Appendix 

To obtain bounds on the integral Jexp(-S) we write 

j' exp(-S) = j exp(-S1) exp[-(S - SI)] 

and then make use of the inequality, true for odd integers n, 

e x p y a 1 + y + y 2 / 2 ! +  . . . y " /  n !  

to give 

[ exp(-S) 2 J 

Now taking S1 to be of the form S + S , ,  where 5 is a parameter independent of the 
integration variables, and varying 5 to maximise the right-hand side, we have 
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so a stationary point is given for 6 satisfying the condition 

I exp(-So)(S -so - 6)" = 0. 

It is easily verified that there is a unique real solution for 6 and that the second derivative 
a2J/a t2  is negative for this value, so that the stationary point is a maximum. Hence the 
optimum bound is given by 

with 6 given by (A2). For the case n = 1 we see that 

6 = ( S  - S d o ,  
and (A3) then gives the Feynman variational principle 

I exp(-S) 3 (J' exp(-So)) exp(-(S - SOM. 

It does not necessarily follow that the approximations improve with increasing n, 
because the basic inequality (Al) does not sharpen, over the whole range of y values, as 
n increases. It seems likely, however, that an improvement over the Feynman 
approximation would be expected when the dominant contribution to the expectation 
value (exp[-(S -So - comes from a region of space where S - S o  - 6 is small. As a 
simple example consider the integral J-Ym dx exp(-x4), the exact value of which is 
1,8128. Using the trial function So = px2, with p a variable parameter, the Feynman 
method gives an approximate value 1.7293, while the n = 3 approximation gives 
1.8035. 
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